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The dispersive behavior of phononic crystals and locally resonant metamaterials is influenced by

the type and degree of damping in the unit cell. Dissipation arising from viscoelastic damping is

influenced by the past history of motion because the elastic component of the damping mechanism

adds a storage capacity. Following a state-space framework, a Bloch eigenvalue problem incorpo-

rating general viscoelastic damping based on the Zener model is constructed. In this approach, the

conventional Kelvin–Voigt viscous-damping model is recovered as a special case. In a continuous

fashion, the influence of the elastic component of the damping mechanism on the band structure of

both a phononic crystal and a metamaterial is examined. While viscous damping generally narrows

a band gap, the hereditary nature of the viscoelastic conditions reverses this behavior. In the limit

of vanishing heredity, the transition between the two regimes is analyzed. The presented theory

also allows increases in modal dissipation enhancement (metadamping) to be quantified as the type

of damping transitions from viscoelastic to viscous. In conclusion, it is shown that engineering the

dissipation allows one to control the dispersion (large versus small band gaps) and, conversely,

engineering the dispersion affects the degree of dissipation (high or low metadamping).
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4934845]
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I. INTRODUCTION

The field of wave propagation in periodic materials has

witnessed an explosive increase in activity over the past few

decades,1 especially in the category of phononic crystals2,3

and acoustic/elastic metamaterials,4 collectively, phononic

materials. The appeal of intrinsic vibration control by design

gives impetus to phononic materials research. However, de-

spite its physical importance, there are only a few investiga-

tions into the impact of material damping on wave

propagation. Nevertheless, discrepancies between theoretical

and experimental results in some studies have been attributed

to energy loss, e.g., Ref. 5. The theoretical acknowledgment

of dissipative effects not only constitutes a more authentic

description of the dispersion characteristics of phononic mate-

rials, but also provides a means by which the material design

process may be guided by the application-specific demand for

the maximization (or minimization) of dissipation.6

Of the studies that consider the treatment of damping,

many focus on simulating finite periodic structures.7–9

Dispersion analysis at the unit cell level, on the other hand,

provides information on the intrinsic dynamical properties of

the medium, which offers insights that are in principle appli-

cable to any finite-structure analysis, regardless of the size,

number of cells, boundary conditions, or nature of excitation.

In unit cell analysis, wave propagation in a periodic material

is fully characterized by the application of Bloch’s theorem.10

The proposition maintains that the wave field in a periodic

medium is the product of an amplitude function with the

spatial periodicity, a, of the unit cell and a plane wave enve-

lope. In terms of the displacement response vector, �uðx; j; tÞ,
this is expressed as

�uðx; j; tÞ ¼ ~uðxÞeij�xþkt; (1)

where ~uðxÞ represents the amplitude function that is periodic

across the unit cell domain. Subsequently,

�uðxþ a; j; tÞ ¼ �uðx; j; tÞeij�a: (2)

The wavevector, j, and the quantity, k, modulate the wave

envelope in space and time, respectively. In much of the lit-

erature, k is prescribed as an imaginary value, i.e., k ¼ �ix,

representing waves that decay in space but not in time when

energy dissipation is present.11–15 In the laboratory, this sce-

nario is analogous to a harmonic (driven) excitation of a cor-

responding finite periodic structure. In this paper, we

consider the case where k is generally a complex number

thus the energy loss manifests as temporal attenuation.15–18

This treatment is consistent with results obtained from free

vibration analysis of a corresponding damped finite periodic

structure. Only in the absence of energy dissipation do the

free and harmonic wave conditions yield identical results.1

A literature synopsis of past studies that investigated

dispersion properties of damped periodic materials reveals

a variety of approaches in both the manner of modeling the

damping and the method of solution. Among the early stud-

ies is Mead’s calculation of the wave motion phase and

attenuation constants for one-dimensional (1D) lumped-

parameter, chain-like models exhibiting structural damping

(i.e., velocity-independent damping forces).12 Generally, ita)Electronic mail: mih@colorado.edu
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is common to incorporate the damping via a complex elas-

tic modulus8,19,20 or a convolution integral expression

applied to the elastic modulus.21 Damping has also been

introduced via a complex inertial term22 and as a stand-

alone parameter, or matrix, that multiplies with the velocity

vector in the equation of motion.17,18 The quality of an

adopted damping model improves whenever its perform-

ance is compared and calibrated with experimental

results.23–25 Nevertheless, regardless of the choice, any

damping model is acceptable in principle provided the

resulting rate of energy dissipation is positive.26–28

Other than the manner of introducing the damping into

the problem, a key classification of damping is in the nature

of the dissipation mechanism it permits. Here, we consider

two key classes: viscous damping and viscoelastic damping.

Dissipation arising from viscous damping depends upon the

instantaneous modal velocities. On the other hand, dissipa-

tion arising from viscoelastic damping is influenced by the

past history of motion; this is because the elastic component

of the damping adds a storage capacity. A viscous damping

model is appropriate for material systems where fluid viscos-

ity is the dominant dissipative mechanism, such as in a dash-

pot or in a configuration where the material is exposed to a

fluid.29 A viscoelastic model, on its part, is representative of

a solid exhibiting material loss, such as in polymers, or gen-

erally a material that exhibits the irreversible micromechani-

cal processes of relaxation. Non-conservative forces in a

viscoelastic model are hereditarily dependent upon the entire

history of motion up to and including the present state.

Mathematically, this dependence manifests as a convolution

integral over kernel functions rather than the instantaneous

value of any state variable. The contrast between the viscous

and the viscoelastic nature of material damping results in

fundamental differences in the dispersion behavior, which is

the main focus of this paper.

Another aim of this work is to consider the effect of the

type of damping on the dissipative capacity of phononic

crystals and metamaterials, particularly the latter. One of the

aims of vibration control is to decrease transmission from

the environment to a protected structure. This is often

attempted through the introduction of an intervening, dissi-

pative material such as rubber. However, dissipative materi-

als generally lack a load-bearing capacity (stiffness) and

efforts to combat this deficiency usually sacrifice the damp-

ing quality that was the original appeal, revealing an age-old

trade-off in materials engineering. The challenge of achiev-

ing simultaneously high stiffness and high damping within a

single material has been addressed in a variety of ways using

composites.30–33 In a recent study of damped phononic mate-

rials,6 the concept of metadamping was introduced to

describe the notion of an amplification of dissipation in

locally resonant metamaterials when compared to Bragg-

scattering materials of equivalent stiffness and equally pre-

scribed viscous damping. In the present paper, using a pho-

nonic crystal and metamaterials as Bragg and locally

resonant materials, respectively, we investigate the meta-

damping phenomenon within the framework of both types of

damping, viscous and viscoelastic.

The paper is divided into three parts, all focused on free

wave motion. First, in Sec. II, we introduce the viscous and

viscoelastic damping models that form the foundation of the

rest of the paper; we discuss their physical attributes as it

relates to material deformation and address the non-standard

eigenvalue problem that arises from their representation in

the equations of motion. Following this discussion, Sec. III

presents wave dissipation in phononic crystals and acoustic

metamaterials with a focus on the qualitative differences

between the viscous and viscoelastic types. In Sec. IV, these

differences are explored further to reveal the implications on

metadamping. Finally, conclusions are presented in Sec. V.

II. STATE-SPACE TRANSFORMATION

Damping dependent upon state variables other than the

instantaneous displacement or acceleration does not immedi-

ately yield a standard eigenvalue problem. In this section, by

a state-space transformation of the equations of motion, a

standard eigenvalue problem is formulated.18,28,34 In the case

of viscous damping, this transformation adopts the familiar

Duncan form. For the viscoelastic description, this formula-

tion is extended by the addition of one or more internal

variables.

A. Formulation of viscous wave propagation problem

Consider the unit cell of a phononic material with spa-

tial periodicity in one, two, or three dimensions. For a mate-

rial model represented by a lumped-parameter system or by

the spatial discretization of a continuum, the equations of

motion for a viscously damped unit cell are written com-

pactly in matrix form as

M€u þ C _u þKu ¼ f; (3)

where M, C, and K are the assembled n� n mass, damping,

and equilibrium stiffness matrices, respectively. While the

material properties make the determination of M and K rela-

tively straightforward, the coefficients of C must be

extracted from experimental data.24–26 Often, Cj is obtained

for each material/structural constituent j so that C is

assembled from the individual Cj. The n� 1 vector u col-

lects the displacement degrees of freedom while the associ-

ated nodal forces (applied by neighboring unit cells) are

contained within f.

We define an m� 1 (m < n) condensed displacement

vector û containing the minimal set of degrees of freedom

including the internal ui and the essential boundary ub dis-

placements. The remaining boundary displacements are

obtained from the essential boundary freedoms through the

application of the appropriate lattice propagation constant.

Thus, exploiting Eq. (2), the condensed set relates to the full

set of unit-cell displacements according to u ¼ Tû, where T is

the n� m transformation matrix enforcing the Bloch boundary

conditions. For convenience, we adopt the partitioning

û ¼ ½ ui ub �T. Given this arrangement, T may be partitioned

into suitably sized identity matrices I and diagonal matrices

for each propagation direction. For the case of a cubic unit cell

with lattice periods ai (i ¼ 1; 2; 3), T has the block form
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T ¼

I 0

0 I

0 Ieij1a1

0 Ieij2a2

0 Ieij3a3

0 Ieiðj1a1þj2a2Þ

0 Ieiðj2a2þj3a3Þ

0 Ieiðj1a1þj3a3Þ

0 Ieij�a

2
66666666666666664

3
77777777777777775

: (4)

Equation (3) is written in terms of û as follows:

M̂ €̂u þ Ĉ _̂u þ K̂û ¼ 0; (5)

where

M̂ ¼ T�MT; (6a)

Ĉ ¼ T�CT; (6b)

K̂ ¼ T�KT; (6c)

and T�f ¼ 0,35 with T� being the conjugate transpose of T.

Although, in this work, the Bloch condition is applied

through T, alternative formulations for lumped-parameter34

and discretized17,18,36 systems are suitable. One benefit of

the formulation is that it brings lumped-parameter and finite-

element (FE) models under the same treatment. In this two-

step approach, one first formulates the structural matrices of

the lumped or FE model, and then applies the boundary

transformation matrix T.

Equation (5) formulates a coupled, non-standard eigen-

value problem with eigenvalues ks and eigenvectors ûs

(s ¼ 1;…;m). However, the matrix Ĉ is generally not diago-

nalizable with eigenvectors associated with M̂ and K̂. Thus,

we recast Eq. (5) into first-order form via a state-space

transformation18

Â _̂y þ B̂ŷ ¼ 0; (7)

where

Â ¼ 0 M̂

M̂ Ĉ

� �
; (8a)

B̂ ¼ �M̂ 0

0 K̂

� �
; (8b)

ŷ ¼ ½ _̂u û�T: (8c)

Now, assuming a solution ŷ ¼ �yect, we obtain a standard

eigenvalue problem for which the eigenvectors are orthogo-

nal with respect to the transformed state-space matrices.

For viscous damping, the state-space transformation

doubles the size of the original problem. Consequently, the

eigenvalue problem that emerges from the substitution of

ŷ ¼ �yect in Eq. (7) has eigenvalues cs and eigenvectors �ys

(s ¼ 1;…; 2m) that appear in conjugate pairs. Given their

orthogonality with respect to the system matrices, the eigen-

vectors decouple the equations into 2m modal equations with

complex roots cs, and thus effectively represent 2m single-

degree of freedom systems. Focusing on the members of the

conjugate pair with Im½cs� > 0, we can write

csðjÞ ¼ �fsðjÞxr;sðjÞ þ ixsðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

s ðjÞ
q

¼ �fsðjÞxr;sðjÞ þ ixd;sðjÞ; s ¼ 1;…;m; (9)

where, in the special case of Rayleigh (proportional) damp-

ing, xr;sðjÞ is the undamped frequency. From Eq. (9), we

extract the wavevector-dependent damped frequency xd;sðjÞ
and damping ratio fsðjÞ, respectively

xd;sðjÞ ¼ Im½csðjÞ�; (10)

fs jð Þ ¼ � Re cs jð Þ½ �
Abs cs jð Þ½ � : (11)

B. Formulation of viscoelastic wave propagation
problem

For the case of viscous damping presented in Sec. II A,

the non-conservative forces are assumed to depend only on

the instantaneous velocities. In practice, this is unique to a sit-

uation in which a viscous fluid is the mechanism for dissipa-

tion. The dissipative forces within common materials such as

polymers, composites, and even metals nonviscously depend

on quantities other than the instantaneous velocities. In the

linear hereditary theory, energy loss is attributed to the phase

lag between the displacement and the internal stress.37 The

label “hereditary” refers to the role of the past history of

motion on the current state. While preserving the linearity of

the problem, a general way of imparting this characteristic to

Eqs. (3) and (5) is through convolution integrals over kernel

functions GðtÞ.29 With exponentially decreasing kernel func-

tions of the form GðtÞ ¼ l1e�l2t, we rewrite Eq. (5) as

M̂ €̂u þ
X‘
j¼1

Ĉj

ðt

0

l1;je
�l2;jðt�sÞ _̂uðsÞdsþ K̂û ¼ 0; (12)

where the summation reflects the possibility of multiple

coefficient matrices and kernel functions with relaxation

pairs (l1;j, l2;j) being required to accurately describe the

behavior. Such a system is described as one of hereditary of

degree ‘. Although, for the Maxwell model of viscoelastic-

ity, the kernel functions are traditionally associated with a

stiffness matrix (effectively adding a dissipative capability),

in Eq. (12), the kernel functions are associated with the

damping matrix (effectively adding a storage capability).

Figure 1 depicts a Maxwell element as a linear spring and a

viscous dashpot arranged in series. The kernel function can

be derived as38

GðtÞ ¼ kMeð�kM=cÞt: (13)

One may imagine that in the limit kM !1, the viscous dash-

pot joins a rigid spring such that essentially no mechanical
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energy is stored by the spring and, instead, is dissipated by

the dashpot. Viscoelastic effects emerge to varying degrees if

kM has a finite, non-zero value that permits the storage of a

portion of the mechanical energy supplied to the Maxwell ele-

ment. In the limit kM ! 0, the spring and dashpot effectively

disengage and mechanical energy is neither conserved nor

dissipated. Multiple Maxwell elements arranged in parallel to

an equilibrium spring (Maxwell–Weichert model) may be

applied to more accurately describe the material behavior.

In this section, we apply the state-space approach to Eq.

(12) by introducing a set of internal variables. We develop

the state-space matrices using an approach proposed for

structural dynamics of finite systems;28 here, we extend it to

the analysis of the unit cell problem. The approach is specific

to the case in which the magnitude of the relaxation pairs are

equal (i.e., lj ¼ l1;j ¼ l2;j). This particular form of the ker-

nel function, possessing a unit area,ð1
0

lje
�ljt dt ¼ 1; (14)

allows the direct comparison of the viscous and viscoelastic

cases.27 For the special case of ‘ ¼ 1 and low damping such

that the damped frequency is approximately equal to the

undamped frequency, Ref. 27 describes a method for extract-

ing l1 and C1 from experimental data.

First, we equate each convolution integral with an inter-

nal variable p̂j such that

p̂j ¼
ðt

0

lje
�ljðt�sÞ _̂uðsÞ ds; (15)

M̂ €̂u þ
X‘
j¼1

Ĉjp̂j þ K̂û ¼ 0: (16)

From the Leibniz integral rule applied to Eq. (15), we obtain

_̂p j ¼ �
ðt

0

l2
j e�ljðt�sÞ _̂uðsÞdsþ lj

_̂u ¼ lj½ _̂u � p̂j�: (17)

Substituting Eq. (17) into Eq. (16) gives

M̂ €̂u þ
X‘
j¼1

Ĉj
_̂u � 1

lj

_̂pj

" #
þ K̂û ¼ 0: (18)

At this point, incorporating Eq. (18) into a state-space format

will result in non-square matrices. To produce square and

block-symmetric state-space matrices, we formulate an addi-

tional equation. Premultiplying Eq. (17) by Ĉj and dividing

by l2
j yields

� 1

lj

Ĉj
_̂u � 1

l2
j

Ĉj
_̂pj þ

1

lj

Ĉjp̂j ¼ 0: (19)

Finally, adjoining Eqs. (18) and (19), we may assemble the

problem into the state-space format of Eq. (7) where

Â ¼

0 M̂ 0 0 � � � 0

M̂
X‘
j¼1

Ĉj �
1

l1

Ĉ1 �
1

l2

Ĉ2 � � � �
1

l‘
Ĉ‘

0 � 1

l1

Ĉ1

1

l2
1

Ĉ1 0 � � � 0

0 � 1

l2

Ĉ2 0
1

l2
2

Ĉ2 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

0 � 1

l‘
Ĉ‘ 0 0 � � � 1

l2
‘

Ĉ‘

2
6666666666666666666664

3
7777777777777777777775

;

(20a)

B̂ ¼ diag �M̂ K̂
1

l1

Ĉ1

1

l2

Ĉ2 � � � 1

l‘
Ĉ‘

� �
;

(20b)

ŷ ¼ ½ _̂u û p̂1 p̂2 � � � p̂‘�
T; (20c)

and diag½�� contains the elements of a block diagonal matrix.

Upon obtaining the eigenvalues cs, there are m conju-

gate pairs that physically represent the modes of damped

wave propagation. The remaining real eigenvalues are non-

oscillating. As seen in the above formulation, in the limit

lj !1 8j, the viscous state-space formulation [Eq. (8)] is

recovered. That is, high values of lj represent more viscous

behavior (less dependence on the past history), while low

values of lj represent more viscoelastic behavior (more de-

pendence on the past history).

III. BAND STRUCTURE OF DAMPED PHONONIC
MATERIALS AND THE VISCOUS-TO-VISCOELASTIC
TRANSITION

A. Lumped parameter model

The formulations in Eqs. (8) and (20) are suitable to an

FE discretization of a material continuum; however, for sim-

plicity, to compare the effects of viscous and viscoelastic

damping on wave propagation in periodic materials, we uti-

lize a simple, 1D lumped-parameter material model composed

of point masses, linear elastic springs, and viscous dashpots.

Furthermore, we examine the results for two archetypal mate-

rial configurations: phononic crystal (PC) [Figs. 2(a) and 2(c)]

and acoustic metamaterial (AM) [Figs. 2(b) and 2(d)]. For the

purpose of demonstration, the material parameters have the

following relations: m2=m1 ¼ rm ¼ 3, c2=c1 ¼ rc ¼ 1=2, and

k2=k1 ¼ rk ¼ 1. With these criteria and degrees of freedom

organized such that u ¼ ½ u1 u2 uL �T, f ¼ ½ f1 f2 fL �T,

and û ¼ ½ u1 u2 �T, we write the matrices associated with

FIG. 1. Maxwell element composed of a series arrangement of a linear elas-

tic spring and a viscous dashpot representing, respectively, conservative and

non-conservative mechanical processes.
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each unit-cell configuration in Fig. 2 explicitly. The two mate-

rial configurations share a common mass matrix,

M ¼ m2Mo ¼ m2

1=rm 0 0

0 1 0

0 0 0

2
4

3
5: (21)

Specifically, for the phononic crystal,

C ¼ c2Co ¼ c2

1=rc þ 1 �1 �1=rc

�1 1 0

�1=rc 0 1=rc

2
4

3
5; (22a)

K ¼ k2Ko ¼ k2

1=rk þ 1 �1 �1=rk

�1 1 0

�1=rk 0 1=rk

2
4

3
5; (22b)

T ¼
1 0

0 1

0 e�ija

2
4

3
5: (22c)

For the metamaterial,

C ¼ c2Co ¼ c2

1=rc þ 1 �1 �1=rc

�1 1 0

�1=rc 0 1=rc

2
64

3
75; (23a)

K ¼ k2Ko ¼ k2

1=rk þ 1 �1 �1=rk

�1 1 0

�1=rk 0 1=rk

2
64

3
75; (23b)

T ¼
1 0

0 1

e�ija 0

2
4

3
5: (23c)

After applying the transformation matrix, M̂, Ĉ, and K̂ are

the same matrices appearing in Ref. 34. Dividing by m2, the

general equations of motion are

M̂o
€̂u þ bĈo

ðt

0

le�lðt�sÞ _̂uðsÞ dsþ x2
0K̂oû ¼ 0; (24)

where b ¼ c2=m2, which varies with c2, is a measure of

damping intensity and x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
. To demonstrate the

viscoelastic case, we employ only one kernel function.

B. Phononic crystal versus metamaterial, and viscous
damping versus viscoelastic damping

As we examine the frequency and damping ratio disper-

sion diagrams, the undamped condition, realized by setting

the normalized damping intensity b=x0 ¼ 0, is represented

by a black curve, while light and dark green curves represent

the damping conditions b=x0 ¼ 0:1 and b=x0 ¼ 0:2, respec-

tively. In particular, the frequency diagrams are normalized

with respect to x0 ¼ 150 rad=s.

FIG. 2. Lumped parameter models of a

two-mass 1D phononic material unit

cell with lattice spacing a with (a),(c)

the Bragg scattering configuration of a

phononic crystal and (b),(d) the locally

resonant configuration of an acoustic

metamaterial. In (a) and (b), damping

is represented by a Zener (viscoelastic

damping) model, whereas in (c) and

(d), it is represented by a Kelvin–Voigt

(viscous damping) model.
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Figures 3(a), 3(c), 3(e), and 3(g) show the dispersion

diagrams generated by Eqs. (7) and (8) for the viscous case

[or Eq. (20) when all the corresponding kernels are delta

functions]. Because the damping force is proportional to

the relative velocity (a function of k) of each degree of free-

dom, the damping effect for both unit-cell configurations is

more pronounced at higher frequencies. In the phononic

crystal case, energy dissipated by propagating waves mani-

fests as a decrease in propagation frequency across the

whole of the wavenumber domain for each branch. Thus,

the width of the band gap decreases and the value of the

central frequency shifts to lower magnitudes. In the meta-

material case, on the other hand, the shift is emphasized at

high-wavenumber modes. Therefore, the band gap effec-

tively remains unchanged. The descent of the frequency

band in response to material damping is consistent with the

corresponding damping ratio diagrams in Figs. 3(c) and

3(g), which provide a measure of the temporal attenuation

of the wave at each j-point. In other words, for a given

wavenumber, a strong shift in frequency [Figs. 3(a) and

3(e)] translates to a high value of damping ratio [Figs. 3(c)

and 3(g)]. For sufficiently high damping intensity, b, over-

damping [i.e., fsðjÞ � 1] is observed over a subset of wave-

numbers (not shown)—these represent non-oscillating

modes (i.e., no wave motion). For these modes, wave prop-

agation is prohibited by damping intensity, not by band-gap

formation mechanisms.

Assuming a single relaxation parameter l ¼ l1 ¼ l2

¼ 103 (kM / l), Figs. 3(b), 3(d), 3(f), and 3(h) demonstrate

the viscoelastic case.39 Similar to the viscous case, the effect

of damping increases with frequency. However, the visco-

elastic frequency diagrams in Figs. 3(b) and 3(f) display

contrasting behavior compared to the viscous case. Under the

chosen viscoelastic conditions, both branches show an

increase in frequency across the wavenumber domain with

this trait emphasized in the second branch. In analogy to the

viscous case, the damping effect takes place across the entire

wavenumber domain for the phononic crystal. As a conse-

quence, the band gap widens and its central frequency shifts

upward. Also in analogy to the viscous case, the frequency shift

is negligible at long wavelengths for the metamaterial (at least

for the chosen value of l), causing the size and location of the

band gap to remain effectively unchanged. By introducing a he-

reditary effect into the damping model, a portion of the me-

chanical energy that would be dissipated in the viscous case is

instead conserved, leading to the increases in frequency and the

slightly lower damping ratio values seen in Figs. 3(d) and 3(h),

respectively. This is a manifestation of joining an elastic spring

in series with the viscous dashpot to form a Maxwell element.

In comparing the phononic crystal and metamaterial

configurations, damping, whether viscous or viscoelastic,

appears to exert a profound influence over the metamaterial

at high wavenumbers. This is illustrated in the band structure

where equally prescribed damping intensity produces

unequal changes in frequency. In Sec. IV, this phenomenon

will be further explored in the context of metadamping.

While the dispersion curves in Fig. 3 show only Bloch

modes corresponding to real wavenumbers, spatially attenu-

ating modes corresponding to the band gap exist as well.

These too shift due to damping as illustrated in Ref. 40,

where the dispersion curves for free waves are obtained by

the transfer matrix method and thus display complex wave-

numbers. In the present study, the effects of damping are

investigated only for propagating modes.

FIG. 3. (Color online) Damped dispersion diagrams (top row) of a discrete, two degree-of-freedom phononic crystal (left column) and acoustic metamaterial

(right column). The undamped, long-wavelength speed of sound cst is displayed for the viscous cases. The corresponding damping ratio diagrams (bottom

row) are a consequence of a complex temporal frequency in the application of the Bloch condition. All mass, stiffness, and damping parameters are identical

between each material model.
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C. Damping zones and transition lines

In Sec. II B, we emphasized that in the limit lj !1 8j,
the viscous state-space formulation [Eq. (8)] is recovered.

For each material configuration of the models examined in

Fig. 3, the plots in Fig. 4 track the evolution of the viscoelas-

ticly damped band-gap edge frequencies over a range of l
for b=x0 ¼ 0:1 and b=x0 ¼ 0:2. The light and dark green

dashed horizontal lines indicate the location of the viscously

damped edge frequencies for, respectively, these two values of

damping intensities. The dashed black lines correspond to the

undamped case. The maximum viscoelastic effect grows

with damping intensity as the storage capability of the

Maxwell element is amplified more than the dissipative

capacity. The figure clearly illustrates the effects of the

level and type of prescribed damping on the size and loca-

tion of the band gap. It can be observed in the vicinity of

l ¼ 500, the metamaterial, similar to the phononic crystal,

experiences a noticeable change in band-gap size/location.

For ease of exposition, since the results are similar

between the material types, we focus exclusively on the pho-

nonic crystal model to further examine viscoelastic wave

propagation. The plots in Fig. 5 highlight the viscous-

viscoelastic metamorphosis particular to b=x0 ¼ 0:2 in Fig.

4(a). Using a Maxwell element with a fixed c and variable kM

as a guide, we inspect the damped band-gap edge frequencies

for various values of l / kM. Point A marks the value of l at

which the band-gap edge frequency is 1% over the viscous

value and beyond which kM is so stiff that it is effectively a

rigid rod such that the vast majority of the energy transferred

to the Maxwell element is rapidly dissipated by the dashpot

(i.e., proportionally less energy is stored by the spring kM). In

this limiting case, the band structure obtained by the visco-

elastic model converges with the band structure obtained by

the viscous model. Conversely, point D marks the value of l
at which the band-gap edge frequency is 1% over the

undamped value and below which kM is so elastic as to effec-

tively disengage the dashpot so as to deprive the Maxwell ele-

ment of mechanical influence. As a result, the band-gap edge

frequencies obtained by the viscoelastic model approach their

undamped values and so does the band structure as a whole.

Between points A and D, while dissipation remains present in

the Maxwell element, kM is neither too rigid nor too flexible to

store a meaningful fraction of mechanical energy. Point B

marks the value of l where the undamped and damped band-

gap edge frequencies are equal, as if the spring component of

the Maxwell element cancels the damping component, although

this equivalence is not necessarily true over the entire wavenum-

ber domain. At point C, the energy storage capability reaches its

zenith and the damped band-gap edge frequency achieves the

greatest separation above its viscously damped counterpart.

In Fig. 5, it is apparent that points A–D do not coincide

between the two branches, thus rendering the transition

between the viscous and viscoelastic behavior frequency

dependent. To better distinguish the two damping regimes,

we identify essentially viscous damping as that for which the

viscoelastic band structure xVE is, on average, within 1% of

the viscous band structure xV as obtained from the matrices

FIG. 4. Viscoelasticly damped band-gap

edge frequencies over the viscoelastic-

viscous regime. Dashed, horizontal lines

mark the value of the corresponding

undamped and viscously damped band-

gap frequencies.

FIG. 5. (Color online) Detailed view

of viscoelasticly damped band-gap fre-

quencies in Fig. 4 (b=x0 ¼ 0:2).
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of Eq. (8). Similarly, with the undamped band structure xU

as a reference, we separate the qualitatively undamped and

viscoelastic regions. Mathematically, the relevant criteria is

stated as follows:

/U ¼
1

mP

Xm

s¼1

þ
xVE;s

xU;s
� 1

� �
dj;

/U � 0:01 undamped

/U > 0:01 viscoelastic;

(
(25a)

/V ¼
1

mP

Xm

s¼1

þ
xVE;s

xV;s
� 1

� �
dj;

/V � 0:01 viscous

/V > 0:01 viscoelastic;

(
(25b)

where P is the path length along the border of the irreducible

Brillouin zone (IBZ). In the present case, assuming a lattice

spacing of a ¼ 1, then P ¼ p.

Figures 6(a) and 6(b) show the variation of /U;V as a func-

tion of l for a set of damping intensities, specifically,

b=x0 ¼ f0:05; 0:10; 0:15; 0:20g. Figure 6(c) combines the

results of Figs. 6(a) and 6(b) to define a viscoelastic region over

a range of damping levels. Typically, /U;VðlÞ displays a single

maximum at l ¼ lpeak where the band structure obtained by

the viscoelastic model has the greatest disagreement with the

FIG. 6. The fractional deviation of the viscoelastic band structure xVE from the (a) undamped band structure xU and (b) viscous band structure xV. Particular

to the damping intensity, xVE transitions to either xU or xV at a specific l ¼ ltrans. With ltrans < lpeak, /UðltransÞ ¼ 0:01 marks the undamped-viscoelastic

transition. Similarly, with ltrans > lpeak, the viscous-viscoelastic transition occurs when /VðltransÞ ¼ 0:01. (c) A map distinguishing the three phases of xVE.

The viscoelastic fluid domain indicates where wave propagation is possible even with K ¼ 0.
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relevant band structure. In Fig. 6(a), for l < lpeak, /U

approaches zero as xVE better approximates xU. Detailed in

the inset, the undamped-to-viscoelastic transition occurs at

l ¼ ltrans, where /UðltransÞ ¼ 0:01. As the prescribed damp-

ing intensity b=x0 increases, it is observed that ltrans shifts

to ever lower values. Above lpeak, the function converges to

negative values as xVE descends below the undamped band

structure to approach xV. Using /V, Fig. 6(b) shows the

transition of the band structure from viscoelastic to the vis-

cous condition. In Fig. 6(b), as b=x0 increases, the slope of

/V for l > lpeak becomes steeper such that the transition to

viscous behavior becomes more abrupt. At the higher damp-

ing intensities presented in Fig. 6(c), ltrans indicates the

increasing abrupt transition as it moves closer to lpeak.

Below lpeak, the opposite occurs and ever smaller values of

l are required to trigger the transition to the undamped

regime.

The transitions to viscoelastic behavior from the respec-

tive undamped and viscously damped conditions as a function

of b=x0 are indicated in Fig. 6(c). Below b=x0 	 0:016,

/U;V � 0:01 8l and so, following our criteria, no clear dis-

tinction between the three damping scenarios exists.

However, given that undamped and viscous qualities reside

on either side of lpeak, it may serve as a boundary between the

two regimes in this otherwise ambiguous damping region. At

b=x0 	 0:016, the viscous-viscoelastic transition is estab-

lished when first /U;VðlpeakÞ ¼ 0:01 and ltrans ¼ lpeak.

Generally, for /U and /V, these points do not coincide but

converge with transition criteria more strict than the present

1%.

Remarkably, for constant b=x0, an overly damped, non-

propagating dispersion branch [xd;sðjÞ ¼ 0 for all or a sub-

set of j] in the viscous region may become a propagating

branch in the viscoelastic region as a result of the amplifica-

tion of kM with decreased l. This amplification leads to a

second interesting result. Under viscous circumstances, if

K ¼ 0, wave propagation is impossible; however, with the

storage capability of the Maxwell element, under visco-

elastic conditions, this is not necessarily true. Increasing C

or decreasing l may amplify kM to the extent of supporting

oscillation and, thus, wave propagation in the phononic ma-

terial. With K ¼ 0 and the appropriate kernel function, we

model a viscoelastic fluid,37 not a viscoelastic solid. For our

phononic crystal, the viscoelastic fluid domain (where propa-

gation is possible despite K ¼ 0) is indicated in Fig. 6(c).

The map concept in Fig. 6(c) may be used by designers

to tailor the type and intensity of damping in order to fall

within the regime of interest, and thus tailor the dissipation

as well as the dispersion and band-gap behavior as desired.

IV. METADAMPING: ENHANCEMENT OF MODAL
DISSIPATION

A. Enhancement of modal dissipation by local
resonance

To combat potentially damaging dynamic loads, it is de-

sirable for an engineering material to possess a high damping

capacity while also maintaining a load-bearing capability

(stiffness). However, for conventional materials, an advantage

in one of these traits usually comes at the expense of the other.

For example, the load-bearing capability of steel is exploited

in many engineering applications although its damping

capacity is weak; on the contrary, polymers such as rubber

excel at dissipating energy but possess little stiffness. Several

approaches have been proposed to meet the challenge of

achieving simultaneously high stiffness and high damping

within a material. Chung30 sought the optimal combination of

dissipative and stiff elements forming a composite. Van

Humbeek31 explored the conditions (amplitude, frequency,

etc.) for which metal alloys with highly dissipative martensitic

phases achieved superior damping and stiffness. Lakes et al.32

demonstrated the efficacy of embedding negative-stiffness

inclusions within a supporting matrix to generate a material

with extreme damping and stiffness. Meaud et al.33 designed

a hierarchical microstructure that displayed significantly

higher stiffness than conventional polymers while maintaining

high damping. In a recent study,6 the concept of metadamping

was introduced to describe the phenomenon of damping emer-
gence that may arise in an acoustic/elastic metamaterial.

Specifically, when compared to a statically equivalent pho-

nonic crystal with identically prescribed damping, a metama-

terial may exhibit higher dissipation levels across particular

modes of wave propagation. This phenomenon has implica-

tions for the design of highly dissipative materials that main-

tain (or do not sacrifice) mechanical load-bearing capacity.

Previously, metadamping has been demonstrated for viscous

conditions.6 In this section, we utilize our material models to

illuminate the metadamping phenomenon in the context of

viscoelastic damping.

Given that the total mass of each configuration in Fig. 2

is the same, static equivalence is achieved when, in the ab-

sence of dissipation, the long-wavelength sound speed,

cst ¼ limj!0ðx1ðjÞ=jÞ, of each material is also in agree-

ment. At present, as indicated in Figs. 3(a) and 3(e), cPC
st

¼ 91:85 and cAM
st ¼ 129:86. While maintaining rk, the two

long-wavelength sound speeds may be brought into agree-

ment by strengthening the springs of the phononic crystal

such that x0 is configuration-specific (i.e., xPC
0 6¼ xAM

0 ).

Alternatively, the same goal can be achieved by weakening

the springs of the metamaterial. The damping ratio diagrams

may then be used to justly compare the damping capacity of

each material configuration. For this purpose, we calculate

the total damping ratio over both branches,

f�tot ¼
Xm

s¼1

þ
n�s ðjÞ dj; � ¼ PC;AM; (26)

where the integration is over the IBZ boundaries.

For b=x0 ¼ 0:2, the diagrams in Fig. 7 illustrate the var-

iation of ntot over a range of cst. In each plot, the dashed

curve corresponding to fAM
tot and the solid curve of fPC

tot

enclose a positive metadamping region (i.e., fAM
tot � fPC

tot > 0).

A typical feature of each plot is the downward slope of f�tot

as cst increases, a result of the material becoming stiffer. The

metadamping region is bounded on the left by a minimum

value of cst for which dissipative wave propagation is still

possible for both configurations over the entire boundary of
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the IBZ. Below this value of cst, the acoustic metamaterial is

overdamped (f> 1), but because Eq. (11) is valid for f � 1,

a fair comparison of fPC
tot and fAM

tot can no longer be made.

Inspecting each frame in Fig. 7 reveals the effect of viscoelas-

ticity on the metadamping region. Naturally, the metadamping

region diminishes and favors the lower left of the diagram as

the damping condition becomes more viscoelastic and heredity

mitigates the dissipation of mechanical energy.

Figure 8 shows the sensitivity of the metadamping phe-

nomenon to the relevant material parameters. As increased he-

redity (decreased l) effectively transforms the viscous dampers

into elastic springs in Fig. 8(a), the metadamping region simul-

taneously descends the ntot-axis and collapses. Metadamping

results from the concentration of strain energy, a task at which

the acoustic metamaterial, with the aid of the internal resonator,

outperforms the phononic crystal. In general, as illustrated in

Figs. 8(b) and 8(d), decreasing rm or increasing the coupling

between m1 and m2 through rk !1 diminishes the role of the

internal resonator and curtails the metadamping phenomenon.

In particular, Fig. 8(b) reveals a narrow region of negative

metadamping (i.e., fAM
tot � fPC

tot < 0). For scenarios in which the

resonator mass, m2 
 m1, the metamaterial resembles a

monoatomic phononic crystal. Manipulating the ratio of damp-

ing viscosities rc bestows the metamaterial resonator with

more/less influence over the emergent phenomenon. Smaller

storage ratios are indicative of a decreased ability for the meta-

material resonator to cache the energy of oscillation and, thus,

the dissipative element of the resonator expresses greater

FIG. 7. (Color online) Total damping

ratio over both branches for the pho-

nonic crystal (solid) and metamaterial

(dashed) over a range of cst values for

(a) the viscoelastic condition and (b) the

viscous condition. The total damping

ratio of each configuration is displayed

for comparison until the overdamped

condition (f > 1) is attained.

FIG. 8. (Color online) Variation of the

metadamping phenomenon with mate-

rial parameters rm, rc, and rk affecting

the influence of the metamaterial inter-

nal resonator and l affecting the influ-

ence of heredity. Damping intensity is

held constant at b=x0 ¼ 0:2. Except

where plainly contradictory, rm ¼ 3,

rc ¼ 1=2, and rk ¼ 1. A negative meta-

damping (fAM
tot < fPC

tot ) region emerges

as rm ! 0:
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influence. Consequently, smaller storage ratios promote the

emergence of the metadamping phenomenon.

B. Effect of local resonance type

Until now, metadamping has been demonstrated with the

aid of a locally resonant material possessing a dipole resonance

(DP). However, locally resonant material designs featuring

monopolar41 and quadripolar42,43 resonances appear in the lit-

erature. This motivates a study of what effect the type of reso-

nance has on the material dissipation capacity. Continuing

with the 1D lumped parameter models used thus far, in Fig. 9,

we present the unit cell of an elastic metamaterial similar to

that of Ref. 44 (although with damping elements) and support-

ing a monopole resonance (MP). Four rigid, massless truss

members connect the unit cell microstructure.

While the mass and transformation matrices are the

same as those defined in Eqs. (21) and (23c), respectively,

the corresponding damping and stiffness matrices for the

unit cell in Fig. 9 are given by Eq. (27) where d ¼ ða=DÞ2:

C ¼ c2Co

¼ c2

1=rc þ d=2
ffiffiffi
d
p

�ð1=rc þ d=2Þffiffiffi
d
p

=2 1 �
ffiffiffi
d
p

=2

�ð1=rc þ d=2Þ �
ffiffiffi
d
p

1=rc þ d=2

2
664

3
775;

(27a)

K ¼ k2Ko

¼ k2

1=rk þ d=2
ffiffiffi
d
p

�ð1=rk þ d=2Þffiffiffi
d
p

=2 1 �
ffiffiffi
d
p

=2

�ð1=rk þ d=2Þ �
ffiffiffi
d
p

1=rk þ d=2

2
664

3
775:
(27b)

The band structure associated with the monopolar metama-

terial has features similar to the dipolar metamaterial and will

not be shown here. In addition, the conclusions reached earlier

in this section regarding the effects of viscoelasticity, energy

concentration, and coupling on the metadamping phenomenon

still hold. For brevity, we consider the viscous case in the meta-

damping plot in Fig. 10. Here, the total damping ratio associ-

ated with the phononic crystal, acoustic metamaterial with DP,

and acoustic metamaterial with MP (d ¼ 1) are compared over

a range of cst. Monopole responses have a higher degree of

symmetry than those of the dipole which permits a greater con-

centration of mechanical energy. With the application of damp-

ing, this superior ability to pool mechanical energy results in

greater dissipation amplification for the monopole metamaterial

than the dipole metamaterial. Extending this reasoning to quad-

rupole and higher-order resonances, it is expected that the

metadamping region will generally narrow with the increased

order (and decreased symmetry) of the resonance. More work

is needed, however, to confirm this prediction.

V. CONCLUSIONS

In this paper, the dispersion properties of phononic mate-

rials are compared when the processes of dissipation at the

unit-cell level are of either viscous or viscoelastic classifica-

tion, or somewhere in between. A state-space formulation of

the equations of motion, extended in the case of viscoelastic-

ity, is required to develop a representative eigenvalue problem

and obtain dispersion relations. Conveniently, by changing a

single parameter affecting the material relaxation, the band

structure obtained by the viscoelastic model may be tuned to

one of three damping regimes—undamped, viscoelastic, or

viscous. When, on average, it falls outside 1% of either the

undamped or pure viscous band structures, the given band

structure may be designated as viscoelastic. Within the visco-

elastic regime, it is shown that the effects of damping on

band-gap size is generally higher in a phononic crystal com-

pared to a locally resonant metamaterial. While viscous
FIG. 9. Lumped parameter model of a two-phased 1D phononic material

unit cell with local monopolar resonance.

FIG. 10. (Color online) Total damping ratio over both branches for the pho-

nonic crystal (solid), metamaterial with DP (dashed), and metamaterial with

MP (dotted) over a range of cst values for the viscous condition.
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dissipation contracts an existing band gap, the heredity effect

of viscoelastic dissipation mitigates this response and even

enlarges the band gap. These behaviors suggest that dispersion

engineering may effectively be realized via dissipation

engineering.

Furthermore, similar to Ref. 6, we find the influence of

dissipation to be greatly affected by the configuration of the

material through which a wave propagates. The metadamping

phenomenon describes the enhanced damping capacity of a

locally resonant material compared to a statically equivalent

Bragg-scattering material. Using mechanical models of a pho-

nonic crystal and an acoustic metamaterial as characteristic

Bragg scattering and locally resonant materials, respectively,

metadamping is shown to diminish under viscoelastic condi-

tions. However, due to the nature of mechanical energy local-

ization, material systems featuring monopolar resonance

exhibit metadamping more than their counterparts with dipolar

resonance. The consequences of these findings extend to the

design of material systems for elastic/acoustic vibration reduc-

tion, mitigation, and absorption purposes.
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